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The PTempEst reference VP matches the average response.

The PTempEst VPop captures variability across all treatment conditions.

The random sampling method did not result in a VPop satisfying all conditions.

The PTempEst approach successfully generated a VPop that matches 
complex, dynamic constraints with significantly interrelated parameters.

• Virtual patient (VP) and virtual population (VPop) 
development is a critical and challenging aspect of 
QSP modeling

• VPs differ from each other in sensitive parameter 
values relevant for clinical variability

• Each VP must meet data constraints, and the VPop 
must reproduce observed clinical distributions

• Parallel tempering [1] is a method for parameter 
estimation in which better global and local sampling 
efficiency allows for more complete sampling of 
complex, high-dimensional parameter spaces, 
avoiding getting stuck in local minima

• Here, we attempt to leverage a parallel tempering 
implementation (PTempEst) to calibrate a reference 
VP while simultaneously building a complete VPop 

• Investigate whether PTempEst can be used to create 
VPs and VPops in a QSP model

• Compare the efficiency of the PTempEst method 
with a brute-force sampling and filtering method

Objectives
• A module of tumor growth driven by ERK and AKT 

activity was added to a published model of MAPK 
signaling [2]

• Values for 14 parameters were estimated using 
PTempEst to fit published data [3] from KRASi and 
SHP2i treatment in mice

A published MAPK signaling model was extended to 
include mouse xenograft tumor growth.

PTempEst was used to estimate parameter values for 
a best-fit VP and a VPop.

• Six MCMC chains were run in parallel using 
Metropolis-Hastings sampling, each at a different 
‘temperature’

o Higher temperatures allow for greater step acceptance 
probability and exploration of parameter space

• Chains swap temperatures periodically to ensure 
both local and global search of parameter space

• Parameters are sampled from prior distributions

• Parameter set acceptance is weighted based on 
proximity to the target mean and normalized based 
on the width of the target standard deviation, 
creating an ensemble of solutions around the mean

A second VPop was created by random sampling. 

• Parameters were randomly sampled using the same 
prior distributions as in the PTempEst approach

• VPs were simulated without treatment and with 
both pathway inhibitors (KRASi and SHP2i)

• VPs that did not pass the filtering criteria for each 
treatment were eliminated

• 10,000 parameter sets were randomly 
sampled

• 68 VPs passed the untreated filtering 
criteria

• 5 VPs passed the untreated + KRASi 
filtering criteria 

• 0 VPs passed the criteria for all three 
therapies

• Random sampling proved extremely 
inefficient at generating a VPop to match 
constraints for all three conditions

• PTempEst facilitates simultaneous calibration of a best-fit reference VP and a 
VPop that matches target distributions

• This approach is particularly effective in complex scenarios, such as:

o Multiple data constraints, such as dynamic time courses for several therapies

o Highly correlated parameter values that make random sampling inefficient

• Using PTempEst greatly accelerates VPop development in QSP models

• The single best fit parameter set resulting from parallel tempering is used as the 
reference VP 

• This VP matches the average tumor growth rate from untreated mice and the 
response to both KRASi and SHP2i treatment [3]

• Intracellular signaling responses can be examined to ensure they qualitatively 
agree with additional evidence, such as in vitro data

• Identification of the best-fit 
parameter set also yielded and 
additional 6,402 unique parameter 
sets that fell within the error bars and 
can serve as the VPop

• Simulations of the full VPop match 
the variability in the data sets used 
for optimization 

• By optimizing against three conditions 
simultaneously we obtain a robust 
and realistically-behaved population 
that can be further analyzed to 
identify drivers of treatment response 
to different therapies

Robert Sheehan1, Renee Myers1, Christina Friedrich1 
1Rosa & Co, LLC, San Carlos, California, USA

REFERENCES
[1] Gupta, S, et al. Evaluation of Parallel Tempering to Accelerate Bayesian Parameter Estimation in Systems Biology. Proceedings—26th Euromicro Intl Conf on Parallel, Distributed, and Network-Based Processing. (2018)
[2] Sayama H, et al. Virtual clinical trial simulations for a novel KRASG12C inhibitor (ASP2453) in non-small cell lung cancer. CPT Pharmacometrics Syst Pharmacol. (2021) 
[3] Shi Z, et al. D-1553: A novel KRASG12C inhibitor with potent and selective cellular and in vivo antitumor activity. Cancer Sci. (2023)

Legend
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Figure 1. PhysioMap® of the expanded MAPK signaling model. PTempEst 
code and the QSP model were implemented in MATLAB® / SimBiology®.

Figure 2. Simulation dynamics (solid lines) for the 
reference VP compared to data from [3].

Figure 3. Example of intracellular signaling species 
simulated with the reference VP.

Figure 4. VPop responses to untreated growth (top),
KRASi therapy (middle) and SHP2i therapy (bottom) 
compared to data [3].

Figure 5. VPs that passed the Untreated (top) and 
the Untreated and KRASi (bottom) filtering criteria.

Figure 6. Correlation matrix showing relationships between select parameters. 
Each dot represents one VP in the PTempEst VPop.

• The marginal 
distribution of pairs of 
parameters estimated 
by PTempEst reflects 
the complex 
relationships between 
parameters that makes 
random sampling 
inefficient
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